contestada

The volume of a gas decreases from 15.7 m3 to 11.2 m3 while the pressure changes from 1.12 atm to 1.67 atm. If the initial temperature is 245 K, what is the final temperature of the gas

Respuesta :

Explanation:

The data is given as follows.

[tex]P_{1}[/tex] = 1.12 atm,              [tex]P_{2}[/tex] = 1.67 atm

[tex]V_{1} = 15.7 m^{3}[/tex],           [tex]V_{2} = 11.2 m^{3}[/tex]

[tex]T_{1} = 245 K[/tex],                  [tex]T_{2}[/tex] = ?

Therefore, calculate the final temperature using the relation as follows.

    [tex]\frac{P_{1}V_{1}}{T_{1}}[/tex] = [tex]\frac{P_{2}V_{2}}{T_{2}}[/tex]

    [tex]\frac{1.12 atm \times 15.7 m^{3}}{245}[/tex] = [tex]\frac{1.67 atm \times 11.2 m^{3}}{T_{2}}[/tex]

 [tex]T_{2} = \frac{1.67 atm \times 11.2 m^{3} \times 245 K}{1.12 atm \times 15.7 m^{3}}[/tex]

                  = [tex]\frac{4582.48 K}{17.584}[/tex]

                  = 260.605 K

                  = 260.61 K (approx)

Thus, we can conclude that final temperature is 260.61 K.

The final temperature of the gas is 260.01 K.

 The final temperature can be calculated by using the equation as follows:-

[tex]\frac{P_{1}V_{1} }{T_{1}} =\frac{P_{2}V_{2} }{T_{2}}[/tex]........(1)

Here, [tex]P_1[/tex] and [tex]P_2[/tex]  is the pressure of this gas before and after the changes.

[tex]V_1[/tex]  and [tex]V_2[/tex] is volume of this gas before and after the changes.

[tex]T_1[/tex] and [tex]T_2[/tex] is the temperature (in degrees Kelvins) of this gas before and after the changes.

Given values:-

[tex]P_1=1.12\ atm, P_2=1.67\ atm\\\\V_1=15.7\ m^{3} , V_2=11.2\ m^{3}\\\\T_1=245\ K.T_2=?[/tex]

Substitute all the values in the equation (1) as follows:-

[tex]\frac{1.12\ atm\times15.7\ m^{3}}{245\ K } =\frac{1.67\ atm\times11.2\ m^{3}}{T_2 }\\T_2=\frac{1.67\ atm\times11.2\ m^{3}\times245\K}{1.12\ atm\times15.7\ m^{3} }\\=260.60\ K[/tex]

Hence, the final temperature of the gas is 260.60 K.

To know more about:-

https://brainly.com/question/23967621