Respuesta :
Explanation:
The data is given as follows.
[tex]P_{1}[/tex] = 1.12 atm, [tex]P_{2}[/tex] = 1.67 atm
[tex]V_{1} = 15.7 m^{3}[/tex], [tex]V_{2} = 11.2 m^{3}[/tex]
[tex]T_{1} = 245 K[/tex], [tex]T_{2}[/tex] = ?
Therefore, calculate the final temperature using the relation as follows.
[tex]\frac{P_{1}V_{1}}{T_{1}}[/tex] = [tex]\frac{P_{2}V_{2}}{T_{2}}[/tex]
[tex]\frac{1.12 atm \times 15.7 m^{3}}{245}[/tex] = [tex]\frac{1.67 atm \times 11.2 m^{3}}{T_{2}}[/tex]
[tex]T_{2} = \frac{1.67 atm \times 11.2 m^{3} \times 245 K}{1.12 atm \times 15.7 m^{3}}[/tex]
= [tex]\frac{4582.48 K}{17.584}[/tex]
= 260.605 K
= 260.61 K (approx)
Thus, we can conclude that final temperature is 260.61 K.
The final temperature of the gas is 260.01 K.
The final temperature can be calculated by using the equation as follows:-
[tex]\frac{P_{1}V_{1} }{T_{1}} =\frac{P_{2}V_{2} }{T_{2}}[/tex]........(1)
Here, [tex]P_1[/tex] and [tex]P_2[/tex] is the pressure of this gas before and after the changes.
[tex]V_1[/tex] and [tex]V_2[/tex] is volume of this gas before and after the changes.
[tex]T_1[/tex] and [tex]T_2[/tex] is the temperature (in degrees Kelvins) of this gas before and after the changes.
Given values:-
[tex]P_1=1.12\ atm, P_2=1.67\ atm\\\\V_1=15.7\ m^{3} , V_2=11.2\ m^{3}\\\\T_1=245\ K.T_2=?[/tex]
Substitute all the values in the equation (1) as follows:-
[tex]\frac{1.12\ atm\times15.7\ m^{3}}{245\ K } =\frac{1.67\ atm\times11.2\ m^{3}}{T_2 }\\T_2=\frac{1.67\ atm\times11.2\ m^{3}\times245\K}{1.12\ atm\times15.7\ m^{3} }\\=260.60\ K[/tex]
Hence, the final temperature of the gas is 260.60 K.
To know more about:-
https://brainly.com/question/23967621