Respuesta :

irspow
You are really just adding the two functions together to create a new function.

x/4 -3+4x^2+2x-4  (making everything have a common denominator of 4 we get:

(x-12+16x^2+8x-16)/4  combine like terms in numerator

(16x^2+9x+4)/4

Answer:

The value of  (f+g)(x) is [tex]4x^2+\frac{9x}{4}-7[/tex].

Step-by-step explanation:

The given functions are

[tex]f(x)=\frac{x}{4}-3[/tex]

[tex]g(x)=4x^2+2x-4[/tex]

We have to find the value of (f+g)(x).

[tex](f+g)(x)=f(x)+g(x)[/tex]

[tex](f+g)(x)=\frac{x}{4}-3+4x^2+2x-4[/tex]

Combine like terms.

[tex](f+g)(x)=4x^2+(\frac{x}{4}+2x)+(-3-4)[/tex]

[tex](f+g)(x)=4x^2+\frac{x+8x}{4}+(-7)[/tex]

[tex](f+g)(x)=4x^2+\frac{9x}{4}-7[/tex]

Therefore the value of  (f+g)(x) is [tex]4x^2+\frac{9x}{4}-7[/tex].