Respuesta :
You are really just adding the two functions together to create a new function.
x/4 -3+4x^2+2x-4 (making everything have a common denominator of 4 we get:
(x-12+16x^2+8x-16)/4 combine like terms in numerator
(16x^2+9x+4)/4
x/4 -3+4x^2+2x-4 (making everything have a common denominator of 4 we get:
(x-12+16x^2+8x-16)/4 combine like terms in numerator
(16x^2+9x+4)/4
Answer:
The value of (f+g)(x) is [tex]4x^2+\frac{9x}{4}-7[/tex].
Step-by-step explanation:
The given functions are
[tex]f(x)=\frac{x}{4}-3[/tex]
[tex]g(x)=4x^2+2x-4[/tex]
We have to find the value of (f+g)(x).
[tex](f+g)(x)=f(x)+g(x)[/tex]
[tex](f+g)(x)=\frac{x}{4}-3+4x^2+2x-4[/tex]
Combine like terms.
[tex](f+g)(x)=4x^2+(\frac{x}{4}+2x)+(-3-4)[/tex]
[tex](f+g)(x)=4x^2+\frac{x+8x}{4}+(-7)[/tex]
[tex](f+g)(x)=4x^2+\frac{9x}{4}-7[/tex]
Therefore the value of (f+g)(x) is [tex]4x^2+\frac{9x}{4}-7[/tex].