6.
P(-5, 8)
R(-1,2)
0
The line / cuts PQ at the point N.
(b) Find
M
Figure 3
The points P(-5, 8), Q(7, 8) and R(-1, 2) form the vertices of a triangle PQR, as shown
in Figure 3. The point M is the midpoint of QR.
The line / passes through M and is parallel to PR.
(a) Find an equation for 1, writing your answer in the form ax + by + c = 0,
where a, b and c are integers to be found.
(4)
(i) the coordinates of N,
(ii) the area of triangle MNQ.
Q(7,8)
(3)
Leave
blank

6 P5 8 R12 0 The line cuts PQ at the point N b Find M Figure 3 The points P5 8 Q7 8 and R1 2 form the vertices of a triangle PQR as shown in Figure 3 The point class=

Respuesta :

Answer:

[tex]\textsf{a)} \quad 3x+2y-19=0[/tex]

b) (i)  N = (1, 8)

b) (ii)  ΔMNQ = 9 units²

Step-by-step explanation:

Given points:

  • P = (-5, 8)
  • Q = (7, 8)
  • R = (-1, 2)

Part (a)

If M is the midpoint of QR then:

[tex]\implies \textsf{M}=\left(\dfrac{x_R+x_Q}{2},\dfrac{y_R+y_Q}{2}\right)[/tex]

[tex]\implies \textsf{M}=\left(\dfrac{-1+7}{2},\dfrac{2+8}{2}\right)[/tex]

[tex]\implies \textsf{M}=\left(3,5\right)[/tex]

If line l is parallel to PR, then its gradient is the same as the gradient of line PR.  Therefore, find the gradient of line PR:

[tex]\implies \textsf{gradient}\:(m)=\dfrac{y_R-y_P}{x_R-x_P}=\dfrac{2-8}{-1-(-5)}=-\dfrac{3}{2}[/tex]

Substitute the found gradient and the coordinates of point M into the point-gradient formula:

[tex]\implies y-y_M=m(x-x_M)[/tex]

[tex]\implies y-5=-\dfrac{3}{2}(x-3)[/tex]

[tex]\implies 2y-10=-3x+9[/tex]

[tex]\implies 3x+2y-19=0[/tex]

Part (b)

(i)   Point N is the point of intersection of line l and PQ.

  • line l:      3x+2y-19=0
  • line PQ:  y = 8

To find the x coordinate of point N, substitute y = 8 into the equation for line l and solve for x:

[tex]\implies 3x+2(8)-19=0[/tex]

[tex]\implies 3x-3=0[/tex]

[tex]\implies 3x=3[/tex]

[tex]\implies x=1[/tex]

Therefore, the coordinates of point N are (1, 8).

(ii)

Triangle MNQ

[tex]\textsf{Height} = y_N-y_M=8-5=3[/tex]

[tex]\textsf{Base} = x_Q-x_N=7-1=6[/tex]

[tex]\begin{aligned}\textsf{Area of a triangle} & = \sf \dfrac{1}{2} \times base \times height\\\\\implies \textsf{Area of triangle MNQ} & = \sf \dfrac{1}{2} \times 6 \times 3\\& = \sf 9\:\:units^2 \end{aligned}[/tex]

Ver imagen semsee45