An asphalt concrete mixture includes 94% aggregates by weight. The specific gravity of aggregate and asphalt are 2.7 and 1.0, respectively. If the bulk density of the mix is 2.317 g/cm3, what is the percent voids in the total mix?

Respuesta :

Answer:

The correct solution is "5.74%".

Explanation:

The given values are:

Gravity of aggregate,

[tex]G_{agg}=2.7[/tex]

Gravity of asphalt,

[tex]G_{asp}=1.0[/tex]

Asphalt concrete mixture,

[tex]W_{agg}=0.94 \ W_m[/tex]

We know that,

[tex]W_{asp}=W_m-W_{agg}[/tex]

        [tex]=0.06 \ W_m[/tex]

Now,

The theoretical specific gravity of mix,

⇒ [tex]G_t=\frac{W_{agg}+W_{asp}}{\frac{W_{agg}}{G_{agg}} +\frac{W_{asp}}{G_{asp}} }[/tex]

By putting the values, we get

         [tex]=\frac{0.94 \ Wm+0.06 \ Wm}{\frac{0.94 \ Wm}{2.7} +\frac{0.06 \ Wm}{1} }[/tex]

         [tex]=2.45[/tex]

hence,

The percentage of voids will be:

⇒  %V = [tex]\frac{G_t-G_m}{G_t}\times 100[/tex]

           = [tex]\frac{2.45-2.317}{2.45}\times 100[/tex]

           = [tex]\frac{0.133}{2.317}\times 100[/tex]

           = [tex]5.74[/tex] (%)