Answer:
The correct solution is "5.74%".
Explanation:
The given values are:
Gravity of aggregate,
[tex]G_{agg}=2.7[/tex]
Gravity of asphalt,
[tex]G_{asp}=1.0[/tex]
Asphalt concrete mixture,
[tex]W_{agg}=0.94 \ W_m[/tex]
We know that,
[tex]W_{asp}=W_m-W_{agg}[/tex]
[tex]=0.06 \ W_m[/tex]
Now,
The theoretical specific gravity of mix,
⇒ [tex]G_t=\frac{W_{agg}+W_{asp}}{\frac{W_{agg}}{G_{agg}} +\frac{W_{asp}}{G_{asp}} }[/tex]
By putting the values, we get
[tex]=\frac{0.94 \ Wm+0.06 \ Wm}{\frac{0.94 \ Wm}{2.7} +\frac{0.06 \ Wm}{1} }[/tex]
[tex]=2.45[/tex]
hence,
The percentage of voids will be:
⇒ %V = [tex]\frac{G_t-G_m}{G_t}\times 100[/tex]
= [tex]\frac{2.45-2.317}{2.45}\times 100[/tex]
= [tex]\frac{0.133}{2.317}\times 100[/tex]
= [tex]5.74[/tex] (%)