Respuesta :

Given:

The compound inequality is:

[tex]3\leq 3x-4<2x+1[/tex]

To find:

The integer solutions for the given compound inequality.

Solution:

We have,

[tex]3\leq 3x-4<2x+1[/tex]

Case 1: [tex]3\leq 3x-4[/tex]

[tex]3+4\leq 3x[/tex]

[tex]\dfrac{7}{3}\leq x[/tex]

[tex]2.33...\leq x[/tex]             ...(i)

Case 2: [tex]3x-4<2x+1[/tex]

[tex]3x-2x<1+4[/tex]

[tex]x<5[/tex]                  ...(ii)

Using (i) and (ii), we get

[tex]2.33...<x<5[/tex]

The integer values which satisfy this inequality are only 3 and 4.

Therefore, the integer solutions to the given inequality are 3 and 4.