Answer:
[tex]\displaystyle y' = -2x^3 + 9x^2 - 2[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
Calculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle y = -\frac{x^4}{2} + 3x^3 - 2x - 12[/tex]
Step 2: Differentiate
- Basic Power Rule: [tex]\displaystyle y' = -\frac{4x^{4 - 1}}{2} + 3 \cdot 3x^{3 - 1} - 1 \cdot 2x^{1 - 1}[/tex]
- Simplify Exponents: [tex]\displaystyle y' = -\frac{4x^3}{2} + 3 \cdot 3x^2 - 1 \cdot 2[/tex]
- Divide: [tex]\displaystyle y' = -2x^3 + 3 \cdot 3x^2 - 1 \cdot 2[/tex]
- Multiply: [tex]\displaystyle y' = -2x^3 + 9x^2 - 2[/tex]