Answer:
The initial acceleration is 97.96 m/s²
Explanation:
Given data:
m = mass of metal cylinder = 0.389 kg
r = radius of plastic tube = 7.41 mm = 7.41x10⁻³m
P₀ = pressure = 1 atm = 1.013x10⁵Pa
The pressure inside the tube is:
[tex]P=P_{0} +\frac{mg}{\pi r^{2} } =1.013x10^{5} +\frac{0.389*9.8}{\pi (7.41x10^{-3})^{2} } =1.234x10^{5} Pa[/tex]
The pressure applied by the plunger is:
[tex]P_{p} =2.79*P=2.79*1.234x10^{5} =3.443x10^{5} Pa[/tex]
The difference between the pressure applied by the plunger and the pressure inside the tube is:
[tex]delt-P=3.443x10^{5} -1.234x10^{5} =2.209x10^{5} Pa[/tex]
The initial acceleration is:
[tex]a=\frac{delta-P*A}{m} =\frac{2.209x10^{5}*\pi *(7.41x10^{-3})^{2} }{0.389} =97.96m/s^{2}[/tex]