For what value(s) of k is the linear system consistent? (Enter your answers as a comma-separated list.)

6x1 − 9x2 = 8

9x1 + kx2 = −1

x1 & x2 are subscripts

Respuesta :

Answer:

Step-by-step explanation:

Given

[tex]6x_1-9x_2=8[/tex]

[tex]9x_1+kx_2=-1[/tex]

The given system is [tex]AX=B[/tex] can be represented by

[tex]\begin{bmatrix}6 &-9 \\ 9 & k\end{bmatrix}\begin{bmatrix}x_1\\ x_2\end{bmatrix}=\begin{bmatrix}8\\ -1\end{bmatrix}[/tex]

The given system is consistent when determinant of A is not equal to zero

[tex]|A|[/tex]

[tex]|A|=6k-(-81)=6k+81[/tex]

[tex]k\neq \frac{-27}{2}[/tex]

i.e. system is consistent for all value of k except [tex]k=\frac{-27}{2}[/tex]

[tex]R-\frac{-27}{2}[/tex]

                 

Answer:

[tex]k\neq -\frac{27}{2}[/tex]

Step-by-step explanation:

We have been given a system of equations as [tex]6x_1-9x_2 = 8\\\\9x_1+kx_2 =-1[/tex]. We are asked to find the value of k such that the given system is consistent.

Let us consider two equations as:

[tex]a_1x+b_1y = c_1\\\\a_2x+b_2y =c_2[/tex]

For a system to be consistent the ratio of coefficient of x terms and y terms should not be equal that is:

[tex]\frac{a_1}{a_2}\neq \frac{b_1}{b_2}[/tex]

Upon substituting our given values, we will get:

[tex]\frac{6}{9}\neq \frac{-9}{k}[/tex]

[tex]6k\neq -81[/tex]

[tex]\frac{6k}{6}\neq -\frac{81}{6}[/tex]

[tex]k\neq -\frac{27}{2}[/tex]

Since the given system will be consistent for all value except [tex]-\frac{27}{2}[/tex], therefore, we can choose any values for k such as [tex]-2[/tex] or 2.