Respuesta :

Answer:

Proved that [tex] 1 - 2\sin ^{2}x = 2\cos ^{2} x - 1[/tex].

Step-by-step explanation:

We know the following identity as [tex]\sin ^{2} x + \cos ^{2} x =1[/tex] .......... (1) and we commonly use this identity as a formula.

Now, rearranging the identity we get

[tex]\sin ^{2}x = 1 - \cos ^{2} x[/tex]

⇒ [tex]2\sin ^{2}x = 2 - 2\cos ^{2} x[/tex]

⇒ [tex] - 2\sin ^{2}x = 2\cos ^{2} x - 2[/tex]

⇒ [tex] 1 - 2\sin ^{2}x = 1 + 2\cos ^{2} x - 2[/tex]

[tex] 1 - 2\sin ^{2}x = 2\cos ^{2} x - 1[/tex]

Hence, proved that [tex] 1 - 2\sin ^{2}x = 2\cos ^{2} x - 1[/tex]. (Answer)