A bakery sells rectangular shape chocolate. The dimensions of each chocolate are 1.1 cm by 0.5 cm by 2.3 cm. The bakery packages 8 of them into a box. If the density of the chocolate is 1.308 gram per cubic centimeter, determine and state, to the nearest gram, the total mass of the chocolate in the box.

Respuesta :

Answer:

[tex]13.23\text{ gram}[/tex]

Step-by-step explanation:

GIVEN: A bakery sells rectangular shape chocolate. The dimensions of each chocolate are [tex]1\text{ cm}[/tex] by [tex]0.5\text{ cm}[/tex] by [tex]2.3\text{ cm}[/tex]. The bakery packages [tex]8[/tex] of them into a box.the density of the chocolate is [tex]1.308\text{ gram per cubic centimeter}[/tex].

TO FIND: the total mass of the chocolate in the box.

SOLUTION:

Volume of one rectangular shape chocolate [tex]=\text{length}\times\text{breadth}\times\text{height}[/tex]

                                                                          [tex]=1.1\times0.5\times2.3[/tex]

                                                                          [tex]=1.265\text{ cm}^3[/tex]

volume of [tex]8[/tex] such chocolates [tex]=8\times1.265[/tex][tex]=10.12\text{ cm}^3[/tex]

Now,

[tex]\text{density}=\frac{\text{mass}}{\text{volume}}[/tex]

putting values,

[tex]1.308=\frac{\text{mass}}{10.12}[/tex]

[tex]\text{mass}=10.12\times1.308[/tex]

        [tex]=13.23\text{ gram}[/tex]

Hence total mass of chocolate in box is [tex]13.23\text{ gram}[/tex]