What are the (time varying) amplitudes of the E and H fields if summer sunlight has an intensity of 1150 W/m2 in any Town?

Calculate the relative strength of the gravitational and solar electromagnetic pressure forces of the sun on the earth.

Respuesta :

Answer:

The relative strength of the gravitational and solar electromagnetic pressure forces is [tex]7.33\times10^{13}\ N[/tex]

Explanation:

Given that,

Intensity = 1150 W/m²

(a). We need to calculate the magnetic field

Using formula of intensity

[tex]I=\dfrac{E^2}{2\mu_{0}c}[/tex]

[tex]E=\sqrt{2\times I\times\mu_{0}c}[/tex]

Put the value into the formula

[tex]E=\sqrt{2\times1150\times4\pi\times10^{-7}\times3\times10^{8}}[/tex]

[tex]E=931.17\ N/C[/tex]

Using relation of magnetic field and electric field

[tex]B=\dfrac{E}{c}[/tex]

Put the value into the formula

[tex]B=\dfrac{931.17}{3\times10^{8}}[/tex]

[tex]B=0.0000031039\ T[/tex]

[tex]B=3.10\times10^{-6}\ T[/tex]

(2). The relative strength of the gravitational and solar electromagnetic pressure forces of the sun on the earth

We need to calculate the gravitational force

Using formula of gravitational

[tex]F_{g}=\dfrac{GmM}{r^2}[/tex]

Where, m = mass of sun

m = mass of earth

r = distance

Put the value into the formula

[tex]F_{g}=\dfrac{6.67\times10^{-11}\times1.98\times10^{30}\times5.97\times10^{24}}{(1.496\times10^{11})^2}[/tex]

[tex]F_{g}=3.52\times10^{22}\ N[/tex]

We need to calculate the radiation force

Using formula of radiation force

[tex]F_{R}=\dfrac{I}{c}\times\pi\timesR_{e}^2[/tex]

[tex]F_{R}=\dfrac{1150}{3\times10^{8}}\times\pi\times(6.371\times10^{6})^2[/tex]

[tex]F_{R}=4.8\times10^{8}\ N[/tex]

We need to calculate the pressure

[tex]\dfrac{F_{g}}{F_{R}}=\dfrac{3.52\times10^{22}}{4.8\times10^{8}}[/tex]

[tex]\dfrac{F_{g}}{F_{R}}=7.33\times10^{13}\ N[/tex]

Hence, The relative strength of the gravitational and solar electromagnetic pressure forces is [tex]7.33\times10^{13}\ N[/tex]