Respuesta :
Answer:
The relative strength of the gravitational and solar electromagnetic pressure forces is [tex]7.33\times10^{13}\ N[/tex]
Explanation:
Given that,
Intensity = 1150 W/m²
(a). We need to calculate the magnetic field
Using formula of intensity
[tex]I=\dfrac{E^2}{2\mu_{0}c}[/tex]
[tex]E=\sqrt{2\times I\times\mu_{0}c}[/tex]
Put the value into the formula
[tex]E=\sqrt{2\times1150\times4\pi\times10^{-7}\times3\times10^{8}}[/tex]
[tex]E=931.17\ N/C[/tex]
Using relation of magnetic field and electric field
[tex]B=\dfrac{E}{c}[/tex]
Put the value into the formula
[tex]B=\dfrac{931.17}{3\times10^{8}}[/tex]
[tex]B=0.0000031039\ T[/tex]
[tex]B=3.10\times10^{-6}\ T[/tex]
(2). The relative strength of the gravitational and solar electromagnetic pressure forces of the sun on the earth
We need to calculate the gravitational force
Using formula of gravitational
[tex]F_{g}=\dfrac{GmM}{r^2}[/tex]
Where, m = mass of sun
m = mass of earth
r = distance
Put the value into the formula
[tex]F_{g}=\dfrac{6.67\times10^{-11}\times1.98\times10^{30}\times5.97\times10^{24}}{(1.496\times10^{11})^2}[/tex]
[tex]F_{g}=3.52\times10^{22}\ N[/tex]
We need to calculate the radiation force
Using formula of radiation force
[tex]F_{R}=\dfrac{I}{c}\times\pi\timesR_{e}^2[/tex]
[tex]F_{R}=\dfrac{1150}{3\times10^{8}}\times\pi\times(6.371\times10^{6})^2[/tex]
[tex]F_{R}=4.8\times10^{8}\ N[/tex]
We need to calculate the pressure
[tex]\dfrac{F_{g}}{F_{R}}=\dfrac{3.52\times10^{22}}{4.8\times10^{8}}[/tex]
[tex]\dfrac{F_{g}}{F_{R}}=7.33\times10^{13}\ N[/tex]
Hence, The relative strength of the gravitational and solar electromagnetic pressure forces is [tex]7.33\times10^{13}\ N[/tex]