Respuesta :
Answer:
Given:
Electric field = 180 N/C
[tex]Force\ on\ proton = 1.6\times10^{-19} C[/tex]
[tex]Force\ on\ proton = 180\times1.6\times10^{-19} =288\times10^{-19} N[/tex]
[tex]Mass\ of\ proton = 1.673\times10^{-27} kg[/tex]
[tex]Acceleration of proton = \frac{force}{mass}[/tex]
[tex]Acceleration\ of\ proton = \frac{288\times10^{-19}}{1.673*10^{-27}} =172\times108 m/s^{2}[/tex]
Let the speed of proton be "x"
x = [tex]\sqrt{Acceleration}[/tex]
[tex]x = \sqrt{(2\times172\times108\times0.125)}=65602.2 m/s[/tex]
Answer:
the velocity of the proton is 65574.38 m/s
Explanation:
given,
uniform electric field = 180 N/C
Distance = 12.5 cm = 0.125 m
charge of proton = 1.6 × 10⁻¹⁹ C
force = E × q
=180 × 1.6 × 10⁻¹⁹
F= 2.88 × 10⁻¹⁷ N
mass of proton = 1.673 × 10⁻²⁷ kg
acceleration =[tex]\dfrac{force}{mass}[/tex]
=[tex]\dfrac{2.88 \times 10^{-17}}{1.673\times 10^{-27}}[/tex]
=1.72 × 10¹⁰ m/s²
velocity = [tex]\sqrt{2\times 0.125 \times 1.72 \times 10^{10}}[/tex]
=65574.38 m/s
hence , the velocity of the proton is 65574.38 m/s