Answer:
The final angular velocity of the disks is 25 rpm.
Explanation:
Given that,
Angular velocity [tex]\omega_{1}= 30\ rpm[/tex]
Angular velocity [tex]\omega_{2}=20\ rpm[/tex]
We need to calculate the angular velocity
Using formula of angular momentum
[tex]L=I\omega[/tex]
Before the drop, the angular momentum of the system
[tex]L_{s}=I\omega_{1}+I\omega_{2}[/tex]
[tex]L_{s}=I(\omega_{1}+\omega_{2})[/tex]
[tex]L_{s}=I(30+20)[/tex]
[tex]L_{s}=I(50\ rpm)[/tex]....(I)
When both disk rotates together then the total moment of inertia is twice the inertia of one disk
[tex]L_{s}=2I\omega[/tex]
From equation (I)
[tex]2I\omega=I\times50[/tex]
[tex]\omega=25\ rpm[/tex]
Hence, The final angular velocity of the disks is 25 rpm.