Respuesta :
A) x^1/6 + 2x^2/33
If you multiply each one of the exponents in the parentheses by the exponent outside the parentheses you get the answer.
If you multiply each one of the exponents in the parentheses by the exponent outside the parentheses you get the answer.
The simplified expression of [tex]x^{1/3}(x^{1/2} + 2x^2)[/tex] is (d) [tex]x^{\frac56} + 2x^{\frac{7}{2}}[/tex]
The expression is given as:
[tex]x^{1/3}(x^{1/2} + 2x^2)[/tex]
Start by opening the bracket
[tex]x^{1/3}(x^{1/2} + 2x^2) = x^{1/3} \times x^{1/2} + x^{1/3} \times 2x^2[/tex]
Apply law of indices
[tex]x^{1/3}(x^{1/2} + 2x^2) = x^{1/3+1/2} + x^{1/3} \times 2x^2[/tex]
Take LCM
[tex]x^{1/3}(x^{1/2} + 2x^2) = x^{\frac{2 + 3}{6}} + x^{1/3} \times 2x^2[/tex]
[tex]x^{1/3}(x^{1/2} + 2x^2) = x^{\frac56} + x^{1/3} \times 2x^2[/tex]
Rewrite the expression as:
[tex]x^{1/3}(x^{1/2} + 2x^2) = x^{\frac56} + 2x^{1/3} \times x^2[/tex]
Apply law of indices again
[tex]x^{1/3}(x^{1/2} + 2x^2) = x^{\frac56} + 2x^{1/3 + 2}[/tex]
Take LCM
[tex]x^{1/3}(x^{1/2} + 2x^2) = x^{\frac56} + 2x^{\frac{1 + 6}{2}}[/tex]
[tex]x^{1/3}(x^{1/2} + 2x^2) = x^{\frac56} + 2x^{\frac{7}{2}}[/tex]
Hence, the simplified expression of [tex]x^{1/3}(x^{1/2} + 2x^2)[/tex] is (d) [tex]x^{\frac56} + 2x^{\frac{7}{2}}[/tex]
Read more about simplifying expressions at:
https://brainly.com/question/8690932