Pls help I’m really confused
Find AB round to the nearest tenth if necessary

Answer:
[tex]AB=12.12[/tex]
Step-by-step explanation:
Using intersecting secant theorem that is:
If two secant segments are drawn to a circle from an exterior point, then the product of the measures of one secant segment and its external secant segment is equal to the product of the measures of the other secant segment and its external secant segment.]
Thus, [tex]AB{\times}AC=(AD)^2[/tex]
[tex]AB{\times}(AB+BC)=(AD)^2[/tex]
Substituting the given values, we get
[tex]AB(AB+9)=256[/tex]
[tex](AB)^2+9AB=256[/tex]
[tex](AB)^2+9AB-256=0[/tex]
using the quadratic formula, we have
[tex]AB=\frac{-9{\pm}\sqrt{(9)^2-4(1)(-256)}}{2}[/tex]
[tex]AB=\frac{-9{\pm}\sqrt{81+1024}}{2}[/tex]
[tex]AB=\frac{-9{\pm}\sqrt{1105}}{2}[/tex]
[tex]AB=\frac{-9{\pm}33.24}{2}[/tex]
Then, [tex]AB=12.12[/tex] and [tex]AB=-21.12[/tex]
Since, AB cannot be negative, thus the measure of AB is 12.1.