Respuesta :

Answer: x = 0 and x = 16.

Explanation:

1) given

[tex] \sqrt{2x+4} - \sqrt{x} = 2[/tex]

2) transpose √x to the right side

[tex] \sqrt{2x+4} = \sqrt{x} +2[/tex]

3) square both sides

2x + 4 = (√x + 2)²

2x + 4 = x + 4√x + 4

4) transpose 4√x + 4 to the left side

2x - x + 4 - 4 = 4√x

x = 4√x

5) square both sides

x² = 16x

6) transpose 16x to the left side

x² - 16x = 0

7) factor

x (x - 16) = 0

8) equal each factor to 0

 x = 0

x - 16 = 0 ⇒ x = 16.

9) test both solutions to discard extraneous solutions:

a) x = 0

√(2(0) + 4) - √0 = 2

√4 = 2

2 = 2 ⇒ ok

b) x = 16

√(2(16) + 4) - √16 = 2

√(32 + 4) - 4 = 2

√36 - 4 = 2

6 - 4 = 2

2 = 2 ⇒ ok.

So, both x = 0 and x = 16 are solutions.