Respuesta :
Answer:
0.0017947
Step-by-step explanation:
x y xy [tex]x^2[/tex] [tex]y^2[/tex]
3 2 6 9 4
5 7 35 25 49
9 10 90 81 100
11 14 154 121 196
14 18 252 196 324
N = 5
[tex]\sum x=3+5+9+11+14=42[/tex]
[tex]\sum y=2+7+10+14+18=51[/tex]
[tex]\sum (xy)=6+35+90+154+252=537[/tex]
[tex]\sum x^2=9+25+81+121+196=432[/tex]
[tex]\sum y^2=4+49+100+196+324=673[/tex]
Now to find r we will use the formula:
[tex]r =\frac{N\sum(xy)-\sum x \sum y}{(N \sum x^2 -(\sum x)^2)(N \sum y^2 -(\sum y)^2)}[/tex]
Substitute the values to find value of r
[tex]r =\frac{5(537)-(42 \times 51)}{(5 (432) -(42)^2)(5(673) -(51)^2)}[/tex]
[tex]r =0.0017947[/tex]
Thus the value of r is 0.0017947