Respuesta :

f= (x) cos ÷ sin.

so f would be -5

f ''(x) = 7 + cos x, f(0) = −1, f(9π/2) = 0.

To find f'(x) we integrate f''(x)

f'(x) = ∫ f''(x) = ∫ (7 + cos x) dx = 7x + sin x + A

To find f'x) we integrate f'(x)

f(x) = ∫ f'(x) = ∫ (7x + sin x + A) dx = 7*[tex] \frac{x^2}{2} [/tex] - cosx + Ax + B

Now we plug in the values and solve for A and B

f(x) = [tex] \frac{7x^2}{2} [/tex] - cosx + Ax + B

f(0) = −1

f(0) = [tex] \frac{7*0^2}{2} [/tex] - cos(0) + A(0) + B

-1 = - cos(0) + B

-1 = -1 + B

B = 0

f(9π/2) = 0

f([tex] \frac{\pi9}{2} [/tex]) = [tex] \frac{7}{2}(\frac{9\pi }{2}) ^2 [/tex] - cos([tex] \frac{\pi9}{2} [/tex])+ A([tex] \frac{\pi9}{2} [/tex]) + B

f([tex] \frac{\pi9}{2} [/tex]) = [tex] \frac{ 7*81\pi^2}{8} [/tex] - cos([tex] \frac{\pi9}{2} [/tex])+ A([tex] \frac{\pi9}{2} [/tex]) + B

0 = [tex] \frac{ 7*81\pi^2}{8} [/tex] - 0+ A([tex] \frac{\pi9}{2} [/tex]) + 0

A([tex] \frac{\pi9}{2} [/tex]) = [tex] \frac{ 7*81\pi^2}{8} [/tex]

multiply by [tex] \frac{2}{\pi9} [/tex] on both sides

A = [tex] \frac{63\pi}{4} [/tex]

So f(x) = [tex] \frac{7x^2}{2} [/tex] - cosx + [tex] \frac{63\pi}{4} [/tex] x + 0