Respuesta :
The answer is x= π/2 to x= π
(just did this question & got it right)
(just did this question & got it right)
Answer: Option (A) is correct.
Step-by-step explanation: The given function is
[tex]f(x)=4\cos (2x-\pi).[/tex]
We are to select the interval in which the above function is decreasing.
For the interval [tex]x=\dfrac{\pi}{2}~\textup{to}~x=\pi,[/tex]
[tex]f(\dfrac{\pi}{2})=4\cos(2\times \dfrac{\pi}{2}-\pi)}=4\cos(\pi-\pi)=4\cos 0=4(1)=4,\\\\f(\pi)=4\cos(2\pi-\pi)=4\cos \pi=4(-1)=-4.[/tex]
So, f(x) is decreasing in this interval.
For the interval [tex]x=0~\textup{to}~x=\dfrac{\pi}{2}[/tex],
[tex]f(0)=4\cos(2\times 0-\pi)}=4\cos(0-\pi)=4\cos pi=4(-1)=-4,\\\\f(\dfrac{\pi}{2})=4\cos(2\times \dfrac{\pi}{2}-\pi)=4\cos (\pi-\pi)=4(1)=4.[/tex]
So, f(x) isnot decreasing in this interval.
For the interval [tex]x=\dfrac{\pi}{2}~\textup{to}~x=\dfrac{3\pi}{2},[/tex]
[tex]f(\dfrac{\pi}{2})=4\cos(2\times \dfrac{\pi}{2}-\pi)}=4\cos(\pi-\pi)=4\cos 0=4(1)=4,\\\\f(\dfrac{3\pi}{2})=4\cos(2\times \dfrac{3\pi}{2}-\pi)=4\cos (3\pi-\pi)=4\cos 2\pi=4(1)=4.[/tex]
So, f(x) is not decreasing in this interval.
For the interval [tex]x=\pi~\textup{to}~x=\dfrac{3\pi}{2},[/tex]
[tex]f(\dfrac{\pi}{2})=4\cos(2\times \dfrac{\pi}{2}-\pi)=4\cos (\pi-\pi)=4(1)=4,\\\\f(\dfrac{3\pi}{2})=4\cos(2\times \dfrac{3\pi}{2}-\pi)=4\cos (3\pi-\pi)=4\cos 2\pi=4(1)=4.[/tex]
So, f(x) is not decreasing.
Thus, (A) is the correct option.