Respuesta :
[tex]1+\dfrac z3+\dfrac{z^2}9+\dfrac{z^3}{27}+\cdots=\displaystyle\sum_{n=0}^\infty\left(\frac z3\right)^n[/tex]
which converges for [tex]\left|\dfrac z3\right|<1[/tex] or [tex]|z|<3[/tex] to [tex]\dfrac1{1-\frac z3}=\dfrac3{3-z}[/tex].
which converges for [tex]\left|\dfrac z3\right|<1[/tex] or [tex]|z|<3[/tex] to [tex]\dfrac1{1-\frac z3}=\dfrac3{3-z}[/tex].
The sum to infinity of the series is: [tex]S_{\infty} = \frac{3}{3 - z}[/tex], and it converges from [tex]|z| < 3[/tex] to [tex]\frac{3}{3 - z}[/tex]
The series is given as:
[tex]1 + \frac z3 + \frac{z^2}9 + \frac{z^3}{27} + ........[/tex]
Notice that the series has no end.
This means that, we calculate the sum of the series to infinity.
The series is a geometric series, and it has the following parameters
Initial value, a = 1
Common ratio, r = z/3
The sum to infinity of a geometric series is:
[tex]S_{\infty} = \frac{a}{1 - r}[/tex]
So, we have:
[tex]S_{\infty} = \frac{1}{1 - z/3}[/tex]
Multiply by 3/3
[tex]S_{\infty} = \frac{3}{3 - z}[/tex]
Set the denominator to 0
[tex]3 - z = 0[/tex]
Solve for z
[tex]z= 3[/tex]
In the actual sense, z can be positive or negative.
So, we have:
[tex]|z| = 3[/tex]
Since the series converges, it means that the common ratio (r) is less than 1.
i.e. r < 1
So, we have:
[tex]|z| < 3[/tex]
This means that the series converges from [tex]|z| < 3[/tex] to [tex]\frac{3}{3 - z}[/tex]
Read more about geometric series at:
https://brainly.com/question/12006112