Respuesta :
The answer would be 2x²+11.
(f-g)(x)=f(x)-g(x)=3x²+2-(x²-9) = 3x²- x² + 2 --9 = 2x²+2+9 = 2x²+11
(f-g)(x)=f(x)-g(x)=3x²+2-(x²-9) = 3x²- x² + 2 --9 = 2x²+2+9 = 2x²+11
Here given, [tex] f(x) = 3x^2+2 [/tex] and [tex] g(x) = x^2-9 [/tex]
we have to find [tex] (f-g)(x) [/tex] which means the subtracting of the functions f(x) and g(x).
[tex] (f-g)(x) = f(x) - g(x) [/tex]
= [tex] (3x^2+2) - (x^2-9) [/tex]
= [tex] 3x^2+2 -x^2-(-9) [/tex]
= [tex] 3x^2-x^2+2+9 [/tex] ( we know that multiplication of negative and negative is positive)
= [tex] 2x^2+2+9 [/tex]
=[tex] 2x^2+11 [/tex]
We have got the required answer here.
[tex] (f-g)(x) = 2x^2+11 [/tex]