Respuesta :
[tex]\bf ~~~~~~\textit{parabola vertex form}
\\\\
\begin{array}{llll}
\boxed{y=a(x- h)^2+ k}\\\\
x=a(y- k)^2+ h
\end{array}
\qquad\qquad
vertex~~(\stackrel{}{ h},\stackrel{}{ k})\\\\
-------------------------------\\\\
f(x)=1(x-\stackrel{h}{6})^2\stackrel{k}{-31}\qquad \qquad vertex~(6,-31)[/tex]
Answer:- C is the right answer. The coordinates of the vertex = (h,k) = (6, −31).
Explanation:-
Given standard form :- [tex]f(x)=x^2-12x+5[/tex]
and its vertex form :-[tex]f(x)=(x-6)^2-31[/tex] [which derived from the completing the square form.]
On comparing with the vertex form of equation in parabola = [tex]f(x)=(x-h)^2+k[/tex]
Then the coordinates of the vertex = (h,k) = (6, −31)
- A point (h,k) where a parabola intersects its axis of symmetry is called the vertex (h,k) of the parabola .