Respuesta :

Hello there!

Let's follow order of operations to get to our answer.
(3m)(4m)²
Exponents first because these parentheses don't command us to do any operations.
3m(4²m²)
3m(16m²)
48m³
Remember, when multiplying the terms, ADD the exponents!

I really hope this helps!
Best wishes :)

Answer:

[tex]48m^{3}[/tex] is an equivalent expression to given expression [tex](3m)(4m)^2[/tex]

Step-by-step explanation:

 Given expression [tex](3m)(4m)^2[/tex]

We have to find an equivalent fraction to the given expression [tex](3m)(4m)^2[/tex]

Consider the given expression  [tex](3m)(4m)^2[/tex]

Using property of exponent [tex](ab)^x=a^xb^x[/tex] we have,

[tex](3m)(4m)^2=(3m)(4^2m^2)[/tex]

Simplifying, we get,

[tex](3m)(4m)^2=(3m)(16m^2)[/tex]

Using property of exponent [tex](a^xa^y)=a^{x+y}[/tex] , we have,

[tex](3m)(4m)^2=3\cdot 16m^{2+1}[/tex]

[tex](3m)(4m)^2=48m^{3}[/tex]

Thus, [tex]48m^{3}[/tex] is an equivalent expression to given expression [tex](3m)(4m)^2[/tex]