Respuesta :

Answer:  The correct options are

(B) [tex]\dfrac{9^x.3^x}{9^x}[/tex]

(C) [tex] 3^x[/tex]

(E) [tex]\left(\dfrac{27}{9}\right)^3.[/tex]

Step-by-step explanation:  The given expression is

[tex]E=\dfrac{27^x}{9^x}.[/tex]

We are to select the correct expressions that are equivalent to the expression "E".

We will be using the following properties of exponents:

[tex](i)~a^x.b^x=(ab)^x,\\\\(ii)~\dfrac{a^x}{b^x}=\left(\dfrac{a}{b}\right)^x.[/tex]

We have

[tex]E\\\\\\=\dfrac{27^x}{9^x}\\\\\\=\dfrac{(9\times 3)^x}{9^x}\\\\\\=\dfrac{9^x.3^x}{9^x}\\\\\\=3^x.[/tex]

Also,

[tex]E=\dfrac{27^x}{9^x}=\left(\dfrac{27}{9}\right)^x.[/tex]

Thus, (B), (C) and (E) are the correct options.

Answer:

Answers B, C, and E are correct.

Step-by-step explanation:

a p e x