Respuesta :

Answer:

[tex]y=(x+4)^{2}-37[/tex]

Step-by-step explanation:

we know that

The equation of a vertical parabola into vertex form is equal to

[tex]y=a(x-h)^{2}+k[/tex]

where

(h,k) is the vertex of the parabola

if a> 0 then the parabola open upward (vertex is a minimum)

if a< 0 then the parabola open downward (vertex is a maximum)

In this problem we have

[tex]y=x^{2}+8x-21[/tex]

Convert to vertex form

Complete the square

[tex]y+21=x^{2}+8x[/tex]

[tex]y+21+16=(x^{2}+8x+16)[/tex]

[tex]y+37=(x^{2}+8x+16)[/tex]

[tex]y+37=(x+4)^{2}[/tex]

[tex]y=(x+4)^{2}-37[/tex] --------> equation in vertex form

The vertex is the point [tex](-4,-37)[/tex]

the parabola open upward (vertex is a minimum)

Answer:

the answer is y=(x+4)^2-37

Step-by-step explanation: