What are the zeros of the quadratic function f(x) = 8x2 – 16x – 15? x = –1 – and x = –1 + x = –1 – and x = –1 + x = 1 – and x = 1 + x = 1 – and x = 1 +

Respuesta :

we have that
f(x) = 8x² – 16x – 15

using a graph tool
see the attached figure
x1=-0.696------------> -0.696=(1-1.696)
x2=2.696-------------->2.696=(1+1.696)

the answer is
x1=(1-1.696)
x2=(1+1.696)


Ver imagen calculista

Answer:

The zeros of the quadratic function are 2.696 and -0.696.

Step-by-step explanation:

The given quadratic function is

[tex]f(x)=8x^2-16x-15[/tex]

To find the zeros of the function equate the function equal to 0.

[tex]8x^2-16x-15=0[/tex]

The quadratic formula is

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

Using the quadratic formula, we get

[tex]x=\frac{-(-16)\pm \sqrt{(-16)^2-4(8)(-15)}}{2(8)}[/tex]

[tex]x=\frac{16\pm \sqrt{256+480}}{16}[/tex]

[tex]x=\frac{16\pm \sqrt{736}}{16}[/tex]

[tex]x=1\pm \frac{4\sqrt{46}}{16}[/tex]

[tex]x=1\pm \frac{\sqrt{46}}{4}[/tex]

[tex]x=1\pm 1.696[/tex]

The zeros of the function are

[tex]x=1+1.696=2.696[/tex]

[tex]x=1-1.696=-0.696[/tex]

Therefore the zeros of the quadratic function are 2.696 and -0.696.