Respuesta :
we have that
f(x) = 8x² – 16x – 15
using a graph tool
see the attached figure
x1=-0.696------------> -0.696=(1-1.696)
x2=2.696-------------->2.696=(1+1.696)
the answer is
x1=(1-1.696)
x2=(1+1.696)
f(x) = 8x² – 16x – 15
using a graph tool
see the attached figure
x1=-0.696------------> -0.696=(1-1.696)
x2=2.696-------------->2.696=(1+1.696)
the answer is
x1=(1-1.696)
x2=(1+1.696)

Answer:
The zeros of the quadratic function are 2.696 and -0.696.
Step-by-step explanation:
The given quadratic function is
[tex]f(x)=8x^2-16x-15[/tex]
To find the zeros of the function equate the function equal to 0.
[tex]8x^2-16x-15=0[/tex]
The quadratic formula is
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
Using the quadratic formula, we get
[tex]x=\frac{-(-16)\pm \sqrt{(-16)^2-4(8)(-15)}}{2(8)}[/tex]
[tex]x=\frac{16\pm \sqrt{256+480}}{16}[/tex]
[tex]x=\frac{16\pm \sqrt{736}}{16}[/tex]
[tex]x=1\pm \frac{4\sqrt{46}}{16}[/tex]
[tex]x=1\pm \frac{\sqrt{46}}{4}[/tex]
[tex]x=1\pm 1.696[/tex]
The zeros of the function are
[tex]x=1+1.696=2.696[/tex]
[tex]x=1-1.696=-0.696[/tex]
Therefore the zeros of the quadratic function are 2.696 and -0.696.