The height of a cone is equal to the diameter of the base. What expression represents the volume of the cone, in cubic units?

Respuesta :

By definition, the volume of a cone is given by:
 [tex]V = (1/3) * (\pi) * (r ^ 2) * (h) [/tex]
 Where,
 r: radius of the circular base
 h: height of the cone
 Let's define a variable:
 x: diameter of the base
 We have then that the radio is:
 [tex] r = x / 2 [/tex]
 The height is:
 [tex] h = x [/tex]
 Substituting values:
 [tex]V = (1/3) * (\pi) * ((x / 2) ^ 2) * (x) [/tex]
 Rewriting:
 [tex]V = (1/3) * (\pi) * (x ^ 2/4) * (x) V = (1/12) * (\pi) * (x ^ 3)[/tex]
 Answer:
 
An expression that represents the volume of the cone, in cubic units is:
 
[tex]V = (1/12) * (\pi) * (x ^ 3)[/tex]