Respuesta :

MuchoE
The first 7 terms will be 1+5+9+13+17+21+25
[tex]\sum\limits^6_{i=0}4i+1 = \sum\limits^7_{i=1}4i-3[/tex]
Hope this is what you're looking for

Answer:

[tex]a_n=1+(n-1)4[/tex]

Step-by-step explanation:

Given :  arithmetic series 1 + 5 + 9 + . . .

To Find: Which expression defines the arithmetic series 1 + 5 + 9 + . . . for seven terms?

Solution :

1 + 5 + 9 + . . .

a = first term = 1

d = common difference = 5-1=9-5=4

Formula of nth term = [tex]a_n=a+(n-1)d[/tex]

So, formula for nth term for given sequence  [tex]a_n=1+(n-1)4[/tex]

So,  [tex]a_n=1+(n-1)4[/tex]  defines the arithmetic series 1 + 5 + 9 + . . . for seven terms

Now, formula of sum of n terms in A.P. = [tex]\frac{n}{2}(2a+(n-1)d)[/tex]

So, the sum of seven terms in given series =  [tex]\frac{7}{2}(2\times1+(7-1)4)[/tex]

                                                                      =  [tex]\frac{7}{2}\times(26)[/tex]

                                                                      =  [tex]7\times13[/tex]

                                                                      =  [tex]91[/tex]

Thus the expression for the sum of seven terms = [tex]\frac{n}{2}(2a+(n-1)d)[/tex]