Respuesta :
Answer: 6 cm
Explanation:
Let r = radius of the sphere. Then, the volume of the sphere is given by
Volume = [tex]\frac{4}{3} \pi r^3[/tex] (1)
Since the volume is 288π cm³, equation (1) becomes
[tex]288 = \frac{4}{3} \pi r^3 \newline \indent \frac{4}{3} \pi r^3 = 288\pi \newline \indent \frac{4\pi r^3}{3} = 288\pi \newline \indent 3\left (\frac{4\pi r^3}{3} \right ) = 3(288\pi) \newline \newline \indent 4\pi r^3 = 864\pi \newline \newline \indent \frac{4\pi r^3}{4\pi} = \frac {864\pi}{4\pi} \newline \newline \indent r^3 = 216 \newline \indent r = \sqrt[3]{216} \newline \indent \boxed{r = 6} [/tex]
Hence, the radius is 6 cm.
Explanation:
Let r = radius of the sphere. Then, the volume of the sphere is given by
Volume = [tex]\frac{4}{3} \pi r^3[/tex] (1)
Since the volume is 288π cm³, equation (1) becomes
[tex]288 = \frac{4}{3} \pi r^3 \newline \indent \frac{4}{3} \pi r^3 = 288\pi \newline \indent \frac{4\pi r^3}{3} = 288\pi \newline \indent 3\left (\frac{4\pi r^3}{3} \right ) = 3(288\pi) \newline \newline \indent 4\pi r^3 = 864\pi \newline \newline \indent \frac{4\pi r^3}{4\pi} = \frac {864\pi}{4\pi} \newline \newline \indent r^3 = 216 \newline \indent r = \sqrt[3]{216} \newline \indent \boxed{r = 6} [/tex]
Hence, the radius is 6 cm.
The volume of a sphere is 288π cm³ so, the radius of the sphere is 6cm and this can be determined by using the formula of the sphere.
Given :
The volume of a sphere is 288π cm³.
The volume of the sphere is given by:
[tex]\rm V = \dfrac{4}{3}\pi r^3[/tex] --- (1)
where r is the radius of the sphere and V denotes the volume of the sphere.
Now, put the value of V in the equation (1).
[tex]288\pi=\dfrac{4}{3}\pi r^3[/tex]
[tex]\sqrt[3]{ \dfrac{288\times 3 }{4}} = r[/tex]
r = 6 cm
The volume of a sphere is 288π cm³ so, the radius of the sphere is 6cm.
For more information, refer to the link given below:
https://brainly.com/question/21941816