Respuesta :
[tex]\bf \qquad \textit{Amount for Exponential Decay}\\\\
A=P(1 - r)^t\qquad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{initial amount}\to &730\\
r=rate\to 28.8\%\to \frac{28.8}{100}\to &0.288\\
t=\textit{elapsed time}\to &10\\
\end{cases}
\\\\\\
A=730(1-0.288)^{10}\implies A=730(0.712)^{10}[/tex]
Answer:
A= 24.4 grams
Step-by-step explanation:
An element with mass 730 grams decays by 28.8% per minute
For exponential decay we use formula
[tex]A= P(1-r)^t[/tex]
Where P is the initial amount of element present
A is the amount remaining
r is the decay rate
and t is the time period in minutes
P= 730 grams, r= 28.8%= 28.8/100= 0.288, t= 10 minutes
[tex]A= 730(1-0.288)^10[/tex]
A=24.44122
Round to nearest tenth
So A= 24.4 grams