The given square has a diagonal of 24 meters. What is the measure of a side length? Round to the nearest tenth, if necessary

Respuesta :

Answer:

     Side of the square ≅ [tex]16.97[/tex]

Step-by-step explanation:

The diagonal of a square with side 'a' makes right angled Isosceles triangle.

The Diagonal becomes hypotenuse of the triangle i.e 24 m (given)

Using Pythagorean Theorem:

[tex](Hypotenuse)^2=(Perpendicular)^2+(Base)^2[/tex]

As, Perpendicular and base of the triangle is equal in case of a square with a side of 'a'

                        [tex]H^2=a^2+a^2\\\\24^2=2a^2\\\\2a^2=576\\\\a^2=288\\\\a=\sqrt{288} \\\\[/tex]≅ [tex]16.97[/tex]

OR, (Alternate method)

        Diagonal of a square = [tex]\sqrt{2}*a[/tex]

                                                                                   :  [tex]\sqrt{2} =1.414[/tex]

                                    [tex]24=\sqrt{2}*a\\\\ 24=1.414*a\\\\a=\frac{24}{1.414} \\\\a=16.973[/tex]

Answer:

The correct answer is 28.3

Hope this helps. Have a great day!!!