The circumference of a circle is 3π in. What is the area of the circle? ​ 1.5π ​ in² ​ 2.25π ​ in² ​ 6π ​ in² ​ 9π ​ in²

Respuesta :

C = 2πr
so
r = C/2
π
r = 3
π/2π
r = 3/2
r = 1.5

A = 
πr^2
A = 
π(1.5)^2
A = 2.25
π 

answer
2.25π ​ in²

Answer:

B. [tex]2.25\pi \text{ inches}^2[/tex]

Step-by-step explanation:

We have been given that the circumference of a circle is [tex]3\pi[/tex] inches. We are asked to find the area of the circle.

Since we know that the circumference of a circle is [tex]2\pi r[/tex].

[tex]\text{Circumference}=2\pi r[/tex]

Upon substituting the circumference as [tex]3\pi\text{ inches}[/tex] we will get,

[tex]3\pi=2\pi r[/tex]

Let us divide both sides of our equation by [tex]2\pi[/tex].

[tex]\frac{3\pi\text{ inches}}{2\pi}=\frac{2\pi r}{2\pi}[/tex]

[tex]\frac{3}{2}\text{ inches}=r[/tex]

[tex]1.5\text{ inches}=r[/tex]

[tex]\text{Area of circle}=\pi r^2[/tex]

Upon substituting r=1.5 in area of circle formula we will get,

[tex]\text{Area of circle}=\pi*(1.5\text{ inches})^2[/tex]

[tex]\text{Area of circle}=\pi*2.25\text{ inches}^2[/tex]

Therefore, the area of circle will be [tex]2.25\pi \text{ inches}^2[/tex] and option B is the correct choice.