Respuesta :

Answer:

The following expressions are polynomials:

[tex]3x^2-5x^4+2x-12[/tex]

[tex]x^5-5x^4+4x^3-3x^2+2x-1[/tex]

[tex]x^3-7x^2+9x-5x^4-20[/tex]

The following expressions are not polynomials:

[tex]\frac{4}{x^4}+\frac{3}{x^3}-\frac{2}{x^2}-1[/tex]

[tex]x^{-5}-5x^{-4}+4x^{-3}-3x^{-2}+2x^{-1}-1[/tex]

[tex]\sqrt[4]{x}-\sqrt[3]{x}+4\sqrt{x}-8x+16[/tex]

Step-by-step explanation:

We are required to differentiate the expressions as polynomials and non-polynomials.

Since, we know,

A polynomial is an expression that involves variables and their coefficients separated by mathematical operations with the variables having non-negative integer values.

i.e. A polynomial is of the form, [tex]a_{n}x^{n}+a_{n-1}x^{n-1}+.....+a_{1}x+a_{0}[/tex], with 'n' being non-negative integer.

Thus, according to the definition, we have that,

The following expressions are polynomials:

[tex]3x^2-5x^4+2x-12[/tex]

[tex]x^5-5x^4+4x^3-3x^2+2x-1[/tex]

[tex]x^3-7x^2+9x-5x^4-20[/tex]

The following expressions are not polynomials:

[tex]\frac{4}{x^4}+\frac{3}{x^3}-\frac{2}{x^2}-1[/tex]

[tex]x^{-5}-5x^{-4}+4x^{-3}-3x^{-2}+2x^{-1}-1[/tex]

[tex]\sqrt[4]{x}-\sqrt[3]{x}+4\sqrt{x}-8x+16[/tex]