Respuesta :

susxnn
possible dimensions:
40 x 1
20 x 2
4 x 10
5 x 8

since 10 is 6 more than 4, the length is 10 and the width is 4

Let

x------> the length of the rectangle

y------> the width of the rectangle

A-----> area of the rectangle

we know that

The area of rectangle is equal to

[tex] A=x*y\\A=40\ units^{2} [/tex]

so

[tex] 40=x*y [/tex] --------> equation [tex] 1 [/tex]

[tex] x=6+y [/tex] --------> equation [tex] 2 [/tex]

Substitute equation [tex] 2 [/tex] in equation [tex] 1 [/tex]

[tex] 40=[6+y]*y\\ 40=6y+y^{2} \\y^{2} +6y-40=0 [/tex]

using a graph tool-----> to resolve the second order equation

see the attached figure

the solution is

[tex] y=4 [/tex]

Find the value of x

[tex] x=6+y\\ \\ x=6+4=10\ units [/tex]

therefore

the answer is

The length of the rectangle is equal to [tex] 10\ units [/tex]

The width of the rectangle is equal to [tex] 4 \ units [/tex]

Ver imagen calculista