In a right triangle ΔABC, the length of leg AC = 5 ft and the hypotenuse AB = 13 ft. Find: The length of the angle bisector of angle ∠A.


PLZ HELP!!

Respuesta :

check the picture below.

[tex]\bf cos(\theta)=\cfrac{adjacent}{hypotenuse}\quad cos(CAB)=\cfrac{5}{13}\implies \measuredangle CAB=cos^{-1}\left( \frac{5}{13} \right) \\\\\\ \textit{that means that }\measuredangle hAC=\cfrac{cos^{-1}\left( \frac{5}{13} \right)}{2}\impliedby \textit{one of the halves}[/tex]

now, notice, for the angle hAC, the hypotenuse is hA, and the adjacent side is CA, therefore,

[tex]\bf cos(\theta)=\cfrac{adjacent}{hypotenuse}\qquad cos(hAC)=\cfrac{5}{hA}\implies hA=\cfrac{5}{cos(hAC)} \\\\\\ hA=\cfrac{5}{cos\left[ \frac{cos^{-1}\left( \frac{5}{13} \right)}{2} \right]}[/tex]

make sure your calculator is in Degree mode, if you need the angle in degrees.
Ver imagen jdoe0001