Respuesta :

(x+4y+z)(x-7y)=[tex] x^{2} +4xy+xz-7xy-28y-7yz[/tex]
                       = [tex] x^{2} -3xy+xz-7yz[/tex]

Answer:

The product [tex]\left(x+4y+z\right)\left(x-7y\right)=x^2-3xy-28y^2+xz-7yz[/tex]

Step-by-step explanation:

Given expression (x+4y+z) and (x-7y)

We have to find the product of given expression that is [tex]\left(x+4y+z\right)\left(x-7y\right)[/tex]

Consider [tex]\left(x+4y+z\right)\left(x-7y\right)[/tex]

First multiply each term of first bracket with each term of second bracket, we have,

[tex]=xx+x\left(-7y\right)+4yx+4y\left(-7y\right)+zx+z\left(-7y\right)[/tex]

Apply plus- minus rule, [tex]-(-a)=a[/tex] , we have,

[tex]=xx-7xy+4xy-4\cdot \:7yy+xz-7yz[/tex]

Like terms are terms with same variable having same power.

Adding like terms , we have,

[tex]=xx-3xy-4\cdot \:7yy+xz-7yz[/tex]

Simplify, we have,

[tex]=x^2-3xy-28y^2+xz-7yz[/tex]

Thus, the product [tex]\left(x+4y+z\right)\left(x-7y\right)=x^2-3xy-28y^2+xz-7yz[/tex]