Respuesta :

Hi there!

To find the inverse, switch x and y then solve for the newly placed y.
Y=2x+3/5
X=2y+3/5
X-3/5=2y
Y=(x-0.6)/2

Hope this helps!

Answer:

[tex]f^{-1}(x)=\frac{1}{2}(x-\frac{3}{5})[/tex]

Step-by-step explanation:

The given function is f(x) = 2x + [tex]\frac{3}{5}[/tex]

To get the inverse of this function we will rewrite it in the equation form.

f(x) = y = 2x + [tex]\frac{3}{5}[/tex]

Now we will replace x by y and y by x.

x = 2y + [tex]\frac{3}{5}[/tex]

In next step we have to find the value of y in terms of x.

2y = x - [tex]\frac{3}{5}[/tex]

y = [tex]\frac{1}{2}(x-\frac{3}{5})[/tex]

Now we represent y in the form of the function.

[tex]f^{-1}(x)=\frac{1}{2}(x-\frac{3}{5})[/tex]

Therefore, inverse of function f(x) is [tex]f^{-1}(x)=\frac{1}{2}(x-\frac{3}{5})[/tex]