(Will give brainliest) The values of the impulse and the time interval for various collisions are listed in the table. In which case is the force maximum?

Collision Impulse (kilogram·meters/second) Time Interval (seconds)
A              10,000       10^+3
B              1,000           10^+2
C              100              10^+1
D              10                10^0
E               1              10^-2

A) a
B) b
C) c
D) d
E) e

Respuesta :

Answer:

E) e

Explanation:

Impulse is equal to the product between the force applied (F) and the time interval of the collision ([tex]\Delta t[/tex]):

[tex]I=F \Delta t[/tex]

This means that we can calculate the force for each collision dividing the impulse by the time interval:

[tex]F=\frac{I}{\Delta t}[/tex]

Let's apply the formula to each case:

A) [tex]F=\frac{10,000 kg m/s}{10^3 s}=10 N[/tex]

B) [tex]F=\frac{1,000 kg m/s}{10^2 s}=10 N[/tex]

C) [tex]F=\frac{100 kg m/s}{10^1 s}=10 N[/tex]

D) [tex]F=\frac{10 kg m/s}{10^0 s}=10 N[/tex]

E) [tex]F=\frac{1 kg m/s}{10^{-2} s}=100 N[/tex]

Therefore, the force is the maximum for collision E).

Answer:

Maximum force is in case E i.e. 100 N

Explanation:

Impulse shows the impact of force. Mathematically, it can be written as :

[tex]J=F\times t[/tex]

[tex]F=\dfrac{J}{t}[/tex]

i.e. the force is directly proportional to the impulse and inversely proportional to the time taken.

(A) [tex]F=\dfrac{10,000\ kg\ m/s}{10^3}=10\ N[/tex]

(B) [tex]F=\dfrac{1000\ kg\ m/s}{10^2}=10\ N[/tex]

(C) [tex]F=\dfrac{100\ kg\ m/s}{10}=10\ N[/tex]

(D) [tex]F=\dfrac{10\ kg\ m/s}{1}=10\ N[/tex]

(E) [tex]F=\dfrac{1\ kg\ m/s}{10^{-2}}=100\ N[/tex]

So, it is clear that the maximum force is exerted in case E. Hence, the correct option is (E).