Respuesta :
doubling formula is this:
[tex]P(t)=P(2)^{\frac{t}{d}}[/tex]
where P=initial number of rabbits
t=time
d=time it takes to doulbe
ok, so 4 weeks is the doubling time so that is 4*7=28 days
we wawnt time=98
and oroiginal number of rabbits is 5 so
[tex]P(98)=5(2)^{\frac{98}{28}}[/tex]
[tex]P(98)=5(2)^{3.5}[/tex]
[tex]P(98)=5(2^3)(\sqrt{2})[/tex]
[tex]P(98)=5(8)\sqrt{2}[/tex]
[tex]P(98)=40\sqrt{2}[/tex]
so P(98)≈56.56
we can't have .56 rabbit so round down or up
about 56 or 57 rabbits in 98 days
[tex]P(t)=P(2)^{\frac{t}{d}}[/tex]
where P=initial number of rabbits
t=time
d=time it takes to doulbe
ok, so 4 weeks is the doubling time so that is 4*7=28 days
we wawnt time=98
and oroiginal number of rabbits is 5 so
[tex]P(98)=5(2)^{\frac{98}{28}}[/tex]
[tex]P(98)=5(2)^{3.5}[/tex]
[tex]P(98)=5(2^3)(\sqrt{2})[/tex]
[tex]P(98)=5(8)\sqrt{2}[/tex]
[tex]P(98)=40\sqrt{2}[/tex]
so P(98)≈56.56
we can't have .56 rabbit so round down or up
about 56 or 57 rabbits in 98 days
A rabbit population doubles every 4 weeks. There will be 56 rabbits in 98 days.
Given :
A rabbit population doubles every 4 weeks.
The doubling formula for population is
[tex]P(t)=P(2)^\frac{t}{d}[/tex]
where P is the initial population
t is the time taken to increase
d is the doubling time
Rabbit population doubles every 4 weeks that is 28 days . So , d=28
We need to find how many rabbits are there in 98 days
the value of t=98 days
initial population is 5 rabbits
Replace all the values
[tex]P(t)=P(2)^\frac{t}{d}\\P(28)=5(2)^\frac{98}{28}\\P(28)=5 \cdot 2^3\cdot 2^{\frac{1}{2}}\\P(28)=56.56854[/tex]
There be 56 rabbits in 98 days
Learn more : brainly.com/question/3302970