The nature of the given system of equations is required.
The given lines are coincident, consistent and dependent.
The equations are
[tex]6x+4y=2\\\Rightarrow 6x+4y-2=0[/tex]
[tex]3x+2y=1\\\Rightarrow 3x+2y-1=0[/tex]
The values of
[tex]a_1=6,b_1=4,c_1=-2[/tex]
[tex]a_2=3,b_2=2,c_2=-1[/tex]
[tex]\dfrac{a_1}{a_2}=\dfrac{6}{3}=2[/tex]
[tex]\dfrac{b_1}{b_2}=\dfrac{4}{2}=2[/tex]
[tex]\dfrac{c_1}{c_2}=\dfrac{-2}{-1}=2[/tex]
So, [tex]\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}[/tex]
So, the given lines are coincident, consistent and dependent.
Learn more:
https://brainly.com/question/2224417?referrer=searchResults