Respuesta :
Answer:
The required equation is [tex]x=\frac{-(-9)\pm \sqrt{(-9)^2-4(1)(-20)}}{2(1)}[/tex].
Step-by-step explanation:
If a quadratic equation is [tex]ax^2+bx+c=0[/tex], then the quadratic formula is
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
The given quadratic equation is
[tex]x^2-9x-20=0[/tex]
Here, a=1, b=-9 and c=-20.
Substitute a=1, b=-9 and c=-20 in the above quadratic formula.
[tex]x=\frac{-(-9)\pm \sqrt{(-9)^2-4(1)(-20)}}{2(1)}[/tex]
Therefore the required equation is [tex]x=\frac{-(-9)\pm \sqrt{(-9)^2-4(1)(-20)}}{2(1)}[/tex].
Answer:
This is the right answer
x = StartFraction 9 plus or minus StartRoot (negative 9) squared minus 4(1)(negative 20) EndRoot Over 2(1) EndFraction