Respuesta :

The formula of the distance between 2 points states that the distance AB between points A(a, b) and B(c, d) is found as follows:

                    [tex]\displaystyle{ AB= \sqrt{(a-c)^2+(b-d)^2} [/tex].


Let the points of the polygon be A(-6,-1), B(-3,-4), C(6,5) and D(3,8). Then, the perimeter of the polygon ABCD is
                             
                                                   AB+BC+CD+DA.

We can find each of 
AB, BC, CD, DA by the Distance Formula as follows:


[tex]\displaystyle{ AB= \sqrt{(-6+3)^2+(-1+4)^2}=\sqrt{9+9}=\sqrt{2\cdot9}=3\sqrt{2}[/tex].

[tex]\displaystyle{ AB= \sqrt{(6+3)^2+(5+4)^2}=\sqrt{81+81}=\sqrt{2\cdot81}=9\sqrt{2}[/tex].

[tex]\displaystyle{ AB= \sqrt{(6-3)^2+(5-8)^2}=\sqrt{9+9}=3\sqrt{2}[/tex].

[tex]\displaystyle{ AB= \sqrt{(-6-3)^2+(-1-8)^2}=\sqrt{81+81}=9\sqrt{2}[/tex].


Thus, the perimeter of the polygon is 

           [tex]9\sqrt{2}+9\sqrt{2}+3\sqrt{2}+3\sqrt{2}=24\sqrt{2}[/tex] (units).


Answer: [tex]24\sqrt{2}[/tex] units