Respuesta :

[tex](s-t)\cdot\dfrac{s}{t}=s\cdot\dfrac{s}{t}-t\cdot \dfrac{s}{t}=\dfrac{s^2}{t}-s[/tex]

Explanation:

For the expression (s-t)(s/t) we first use the distributive property:

[tex] (s-t)(\frac{s}{t})
\\
\\=s\times \frac{s}{t}-t\times \frac{s}{t} [/tex]

We can write both s and t as fractions by using a denominator of 1:

[tex] \\=\frac{s}{1}\times \frac{s}{t}-\frac{t}{1}\times \frac{s}{t} [/tex]

To multiply frations, we multiply straight across:

[tex] =\frac{s\times s}{1\times t}-\frac{t\times s}{1\times t}
\\
\\=\frac{s^2}{t}-\frac{ts}{t} [/tex]

In the second fraction, st/t, the t will divide out, or cancel, since it is in both the numerator and denominator:

[tex] \frac{s^2}{t}-s [/tex]