Respuesta :
Refer to the diagram shown below.
v = the tangential speed.
r = the radius of the horizontal circle.
T = tension in the string.
θ = the angle that the string makes with the vertical
m = Bob's mass (mg = the weight)
F = centripetal force
l = the length of the string
From geometry,
r = l sin θ
The centripetal acceleration is
[tex]a= \frac{v^{2}}{r} = \frac{v^{2}}{l \,sin \theta} [/tex]
The centripetal force is
[tex]F = \frac{m v^{2}}{l \, sin \theta} [/tex]
For vertical force balance,
T cosθ = mg (1)
For horizontal force balance,
[tex]Tsin \theta = F = \frac{m v^{2}}{l sin \theta} [/tex] (2)
Divide (2) by (1).
[tex]tan \theta = \frac{v^{2}}{gl sin \theta} \\\\ v^{2} = gl\, sin \theta \,tan \theta \\\\ v= \sqrt{gl \, sin \theta \, tan \theta} [/tex]
Answer: [tex]v = \sqrt{gl \, sin \theta \, tan \theta} [/tex]
v = the tangential speed.
r = the radius of the horizontal circle.
T = tension in the string.
θ = the angle that the string makes with the vertical
m = Bob's mass (mg = the weight)
F = centripetal force
l = the length of the string
From geometry,
r = l sin θ
The centripetal acceleration is
[tex]a= \frac{v^{2}}{r} = \frac{v^{2}}{l \,sin \theta} [/tex]
The centripetal force is
[tex]F = \frac{m v^{2}}{l \, sin \theta} [/tex]
For vertical force balance,
T cosθ = mg (1)
For horizontal force balance,
[tex]Tsin \theta = F = \frac{m v^{2}}{l sin \theta} [/tex] (2)
Divide (2) by (1).
[tex]tan \theta = \frac{v^{2}}{gl sin \theta} \\\\ v^{2} = gl\, sin \theta \,tan \theta \\\\ v= \sqrt{gl \, sin \theta \, tan \theta} [/tex]
Answer: [tex]v = \sqrt{gl \, sin \theta \, tan \theta} [/tex]

The bob must have tangential speed v = √ ( g L sin θ tan θ )
[tex]\texttt{ }[/tex]
Further explanation
Angular Speed can be formulated as follows:
[tex]\boxed {\omega = \frac{ v }{ R }}[/tex]
ω = Angular Speed ( rad/s² )
v = Tangential Speed of Particle ( m/s )
R = Radius of Circular Motion ( m )
[tex]\texttt{ }[/tex]
Linear Speed can be formulated as follows:
[tex]\boxed {v = \frac{ 2 \pi R }{ T }}[/tex]
T = Period of Circular Motion ( s )
v = Tangential Speed of Particle ( m/s )
R = Radius of Circular Motion ( m )
Let us now tackle the problem !
[tex]\texttt{ }[/tex]
Given:
length of string = L
mass of bob = m
acceleration due to gravity = g
angle of string from the vertical = θ
Asked:
tangential speed = v = ?
Solution:
[tex]\Sigma F_y = T_y - mg[/tex]
[tex]0 = T\cos \theta - mg[/tex]
[tex]T \cos \theta = mg[/tex]
[tex]\boxed {T = mg \div \cos \theta}[/tex] → Equation 1
[tex]\texttt{ }[/tex]
[tex]\Sigma F_x = ma[/tex]
[tex]T_x = m \frac{v^2}{R}[/tex]
[tex]T \sin \theta = m \frac{v^2}{R}[/tex]
[tex]( mg \div \cos \theta ) \sin \theta = m \frac{v^2}{ L \sin \theta }[/tex] ← Equation 1
[tex]g \tan \theta = \frac{v^2}{L \sin \theta}[/tex]
[tex]v^2 = gL \tan \theta \sin \theta[/tex]
[tex]\boxed {v = \sqrt { gL \tan \theta \sin \theta } }[/tex]
[tex]\texttt{ }[/tex]
Learn more
- Impacts of Gravity : https://brainly.com/question/5330244
- Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454
- The Acceleration Due To Gravity : https://brainly.com/question/4189441
[tex]\texttt{ }[/tex]
Answer details
Grade: High School
Subject: Physics
Chapter: Circular Motion
