Select all statements below which are true for all invertible n×nn×n matrices aa and bb
a. (ab)−1=a−1b−1(ab)−1=a−1b−1
b. aba−1=baba−1=b
c. (in+a)(in+a−1)=2in+a+a−1(in+a)(in+a−1)=2in+a+a−1
d. a2b7a2b7 is invertible
e. a+ba+b is invertible f. (a+b)(a−b)=a2−b2(a+b)(a−b)=a2−b2

Respuesta :

Answer:

The statements that are correct are:

c) [tex](in+a)(in+a^{-1})=2in+a+a^{-1}[/tex]

d) [tex]a^2b^7[/tex] is invertible.

e) [tex]a+b[/tex] is invertible.

Step-by-step explanation:

We are given that:

a and b are invertible n×n matrices.

We have to tell which of the following statements are true.

a)

[tex](ab)^{-1}=a^{-1}b^{-1}[/tex]

This statement is false.

Since:

[tex](ab)^{-1}=b^{-1}a^{-1}[/tex] and it may not be equal to the term [tex]a^{-1}b^{-1}[/tex]

b)

[tex]aba{-1}=b[/tex]

This expression could also be written as:

[tex]ab=ba[/tex]

Since on Post multiplying by a on both the sides.

But here we don't know whether the matrices are commutative or not.

Hence, the statement is false.

c)

[tex](in+a)(in+a^{-1})=2in+a+a^{-1}[/tex]

This statement is true.

since,

[tex](in+a)(in+a^{-1})=in(in+a^{-1})+a(in+a^{-1})\\\\=in^2+in.a^{-1}+a.in+aa^{-1}\\\\=in+a^{-1}+a+in\\\\=in+a^{-1}+a[/tex]

where in denote the identity matrix.

and we know that:

[tex]in^2=in[/tex]

d)

[tex]a^2b^7[/tex] is invertible.

This statement is true.

Since we know that prodct of invertible matrices is also invertible.

As [tex]a[/tex] is invertible so is [tex]a^2[/tex].

Also [tex]b[/tex] is invertible so is [tex]b^7[/tex].

Hence Product of  [tex]a^2[/tex] and  [tex]b^7[/tex] is also invertible.

i.e. [tex]a^2b^7[/tex] is invertible.

e)

[tex]a+b[/tex] is invertible.

This statement is true as sum of two invertible matrices is invertible.

f)

[tex](a+b).(a-b)=a^2-b^2[/tex]

This statement is false.

Since,

[tex](a+b).(a-b)=a(a-b)+b(a-b)\\\\=a.a-a.b+b.a-b.b\\\\=a^2-ab+ba-b^2[/tex]

Now as we are not given that:

[tex]ab=ba[/tex]

Hence, we could not say that:

[tex](a+b).(a-b)=a^2-b^2[/tex]

The correct statements which are true for all invertible [tex]\left({n\times n}\right)\cdot\left({n\times n}\right)[/tex] are:

(c). [tex]\left({in+a}\right)\left({in+{a^{-1}}}\right)=2in+a+{a^{-1}}[/tex]

(d). [tex]{a^2}{b^7}[/tex] is invertible.

(e). [tex]a+b[/tex] is invertible.

Further Explanation:

Given:

The matrix [tex]a[/tex] and [tex]b[/tex] are invertible [tex]\left({n\times n}\right)[/tex] matrices.

Calculation:

(a)

The statement is [tex]{\left({ab}\right)^{-1}}={a^{-1}}{b^{-1}}[/tex] false.

[tex]\begin{aligned}{\left({ab}\right)^{-1}}&={a^{-1}}{b^{-1}}\\\left({ab}\right){\left({ab}\right)^{-1}}&=\left({ab}\right){a^{-1}}{b^{-1}}\\I&\ne ab{a^{-1}}{b^{-1}}\\\end{aligned}[/tex]

The statement is [tex]{\left({ab}\right)^{-1}}={a^{-1}}{b^{-1}}[/tex] false.

(b)

The statement is [tex]ab{a^{-1}}=b[/tex].

Now multiply by a both the side.

[tex]\begin{aligned}ab{a^{-1}}a&=ba\\ab&\ne ba\\\end{aligned}[/tex]

The statement is [tex]ab{a^{-1}}=b[/tex] is false.

(c)

The statement is [tex]\left({in+a}\right)\left({in+{a^{-1}}}\right)=2in+a+{a^{-1}}[/tex].

Solve the above equation to check whether it is invertible.

[tex]\begin{aligned}\left({in+a}\right)\left({in+{a^{-1}}}\right)&=in\left({in+{a^{-1}}}\right)+a\left({in+{a^{-1}}}\right)\\&=i{n^2}+in\cdot{a^{-1}}+a\cdot in+a{a^{-1}}\\&=in+{a^{-1}}+a+in\\&=in+{a^{-1}}+a\\\end{aligned}[/tex]

The statement is true.

(d)

The statement is [tex]{a^2}{b^7}[/tex].

The product of invertible matrices is always invertible.

As [tex]a[/tex] is invertible so [tex]{a^2}[/tex] is also invertible.

As [tex]b[/tex] is invertible so [tex]{b^7}[/tex] is also invertible.

Hence, the product of [tex]{a^2}[/tex] and [tex]{b^7}[/tex] is also invertible.

The statement is true.

(e)

The statement [tex]a+b[/tex] is true as [tex]a+b[/tex] is always invertible.

(f)

The statement is [tex]\left({a+b}\right)\cdot\left({a-b}\right)={a^2}-{b^2}[/tex].

Solve the equation to check the inevitability.

[tex]\left({a+b}\right)\times\left({a-b}\right)={a^2}-ab+ba-{b^2}[/tex]

The statement is not true as [tex]ab=ba[/tex].

Hence, the correct statements which are true for all invertible [tex]\left({n\times n}\right)\cdot\left({n\times n}\right)[/tex] are:

(c). [tex]\left({in+a}\right)\left({in+{a^{-1}}}\right)=2in+a+{a^{-1}}[/tex]

(d). [tex]{a^2}{b^7}[/tex] is invertible.

(e). [tex]a+b[/tex] is invertible.

Learn more:

1. Learn more about unit conversion https://brainly.com/question/4837736

2. Learn more about non-collinear https://brainly.com/question/4165000

3. Learn more about binomial and trinomial https://brainly.com/question/1394854

Answer details:

Grade: High School

Subject: Mathematics

Chapter: Linear equation

Keywords: Invertible, matrices, matrix, statement, function, true, determinants, elements, inverse.