Lim x → 2 (x3 − 3x + 3) = 5 illustrate the definition by finding the largest possible values of δ that correspond to ε = 0.2 and ε = 0.1

Respuesta :

[tex]\displaystyle\lim_{x\to2}(x^3-3x+3)=5[/tex]

is to say that for any [tex]\varepsilon>0[/tex], we can find [tex]\delta>0[/tex] that guarantees

[tex]|x-2|<\delta\implies|(x^3-3x+3)-5|<\varepsilon[/tex]

[tex]|(x^3-3x+3)-5|=|x^3-3x-2|[/tex]

Observing that [tex]x^3-3x-2\bigg|_{x=2}=8-6-2=0[/tex], the polynomial remainder theorem tells us that we can factorize the cubic to get

[tex]|x^3-3x-2|=|(x-2)(x^2+2x+1)|=|(x-2)(x+1)^2|=|x-2|(x+1)^2[/tex]

If we assume [tex]0<\delta\le1[/tex], we can set up a corresponding upper bound on the quadratic factor. We start with [tex]|x-2|<\delta[/tex], from which we have

[tex]|x-2|<\delta\le1\implies1\le x-2\le3\implies4\le x+1\le6\implies(x+1)^2\le36[/tex]

Now,

[tex]|x-2|(x+1)^2<36|x-2|<\varepsilon\implies |x-2|=\dfrac\varepsilon{36}[/tex]

which suggests that we can choose [tex]\delta=\min\left\{1,\dfrac\varepsilon{36}\right\}[/tex] to ensure that we arrive at the inequality [tex]|(x^3-3x+3)-5|<\varepsilon[/tex].

So, given [tex]\varepsilon=0.2[/tex], we would have

[tex]\delta=\min\left\{1,\dfrac{0.2}{36}\right\}=\min\left\{1,\dfrac1{180}\right\}=\dfrac1{180}[/tex]

If [tex]\varepsilon=0.1[/tex], we would take

[tex]\delta=\min\left\{1,\dfrac{0.1}{36}\right\}=\min\left\{1,\dfrac1{360}\right\}=\dfrac1{360}[/tex]