Respuesta :

Space

Answer:

[tex]\displaystyle 7 \cos^2 \phi - 8 \sin^2 \phi = 0[/tex]

General Formulas and Concepts:
Multivariable Calculus

Spherical Coordinate Conversions:

  • [tex]\displaystyle r = \rho \sin \phi[/tex]
  • [tex]\displaystyle x = \rho \sin \phi \cos \theta[/tex]
  • [tex]\displaystyle z = \rho \cos \phi[/tex]
  • [tex]\displaystyle y = \rho \sin \phi \sin \theta[/tex]
  • [tex]\displaystyle \rho = \sqrt{x^2 + y^2 + z^2}[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle 7z^2 = 8x^2 + 8y^2[/tex]

Step 2: Convert

  1. [Equation] Substitute in Spherical Coordinate Conversions:
    [tex]\displaystyle 7( \rho \cos \phi )^2 = 8( \rho \sin \phi \cos \theta )^2 + 8( \rho \sin \phi \sin \theta )^2[/tex]
  2. Simplify:
    [tex]\displaystyle 7 \rho^2 \cos^2 \phi = 8 \rho^2 \sin^2 \phi \cos^2 \theta + 8 \rho^2 \sin ^2 \phi \sin^2 \theta[/tex]
  3. Factor:
    [tex]\displaystyle 7 \rho^2 \cos^2 \phi = 8 \rho^2 \sin^2 \phi \bigg( \sin^2 \theta + \cos ^2 \theta \bigg)[/tex]
  4. Simplify:
    [tex]\displaystyle 7 \rho^2 \cos^2 \phi = 8 \rho^2 \sin^2 \phi[/tex]
  5. Simplify:
    [tex]\displaystyle 7 \cos^2 \phi = 8 \sin^2 \phi[/tex]
  6. Rewrite:
    [tex]\displaystyle 7 \cos^2 \phi - 8 \sin^2 \phi = 0[/tex]

∴ we have found the given equation in terms of spherical coordinates.

---

Learn more about spherical coordinates: https://brainly.com/question/9557773

Learn more about multivariable calculus: https://brainly.com/question/4746216

---

Topic: Multivariable Calculus

Unit: Triple Integrals Applications