Respuesta :

[tex]a^{-n}=\left(\dfrac{1}{a}\right)^n\\-------------------\\\left(\dfrac{1}{3}\right)^{-5}=\left(\dfrac{3}{1}\right)^5=3^5=3\cdot3\cdot3\cdot3\cdot3=\huge\boxed{243}\leftarrow \boxed{a}[/tex]

[tex]If\ the\ expression\ is\ \dfrac{1}{3^{-5}}\ therefore\ is\ the\ same\ \dfrac{1}{\dfrac{1}{3^5}}=3^5=\huge\boxed{243}[/tex]
TSO
[tex]a^{-b}=\frac {1}{a^b}\\\\ \frac {1}{a^{-b}}=a^b[/tex]

So,
[tex]\frac {1}{3^{-5}}=3^5= 3 \times 3 \times 3 \ times 3 \times 3 = 243[/tex]