Respuesta :
to get the inverse "relation" of any expression, simply start off by switching the variables, and then solve for "y".
[tex]\bf f(x)=y=x+3\qquad inverse\implies \boxed{x}=\boxed{y}+3\implies \stackrel{f^{-1}(x)}{x-3=y}[/tex]
[tex]\bf f(x)=y=x+3\qquad inverse\implies \boxed{x}=\boxed{y}+3\implies \stackrel{f^{-1}(x)}{x-3=y}[/tex]
Answer:
The inverse function of f(x)=x+3 is H(x)=x-3
Step-by-step explanation:
In this case to get the inverse function we have to change the f(x) term with the x and then clear the equation to get the f(x). Solving it, we have:
[tex]f(x)=x+3\\[/tex]
Changing the terms:
[tex]x=f(x)+3[/tex]
Now, clearing the f(x):
[tex]f(x)=x-3[/tex]
The inverse function of f(x)=x+3 is H(x)=x-3