The trinomial x2 – 3x – 4 is represented by the model.


What are the factors of the trinomial?

(x + 1) and (x – 4)
(x + 4) and (x – 1)
(x + 5) and (x – 4)
(x + 4) and (x – 5)

Respuesta :

for [tex]ax^2+bx+c[/tex]
if a=1 then we can factor it into (x+r)(x+t) where rt=c and r+t=b

given
[tex]1x^2-3x-4[/tex]
what 2 numbers multiply to get -4 and add to get -3?
-4 and 1

(x+1)(x-4)
answer is the first option

Answer:

Option A - (x + 1) and (x – 4)

Step-by-step explanation:

Given : The trinomial [tex]x^2-3x-4[/tex] is represented by the model.

To find : What are the factors of the trinomial?

Solution : The given trinomial is a quadratic equation [tex]y=ax^2+bx+c[/tex]

so we solve using by discriminant method.

Solution of x is [tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

Comparing with given quadratic equation [tex]y=x^2-3x-4[/tex]

where a=1, b=-3, c=-4  

Solution is given by

[tex]x=\frac{-(-3)\pm\sqrt{(-3)^2-4(1)(-4)}}{2(1)}[/tex]

[tex]x=\frac{3\pm\sqrt{9+16}}{2}[/tex]

[tex]x=\frac{3\pm\sqrt{25}}{2}[/tex]

[tex]x=\frac{3\pm5}{2}[/tex]

[tex]x=\frac{3+5}{2},\frac{3-5}{2}[/tex]

[tex]x=4,-1[/tex]

The factors are (x-4),(x+1)

Therefore, Option A is correct.

The factors of trinomial [tex]x^2-3x-4=(x-4)(x+1)[/tex]